05-03-2018 |
Ashwin Deopurkar |
CACAAG (Combinatorial Aspects of Commutative Algebra and Algebraic
Geometry) seminar
Speaker: Ashwin Deopurkar
Title: Castulnuouvo's bound and Noether's theorem
Date & Time: Monday 5th March, 2pm
Venue: Room 115
|
|
28-02-2018 |
Prof. Ujjwal Das, IIM Udaipur |
Time and Date: 28th Feb 2018, 4-5 pm
Venue: Ramanujan Hall
Speaker : Prof. Ujjwal Das, IIM Udaipur
Title: Modeling Interval Censored Competing Risks Data with Missing
Causes of Failure
Missing causes of failure are quite frequent in survival and
reliability studies. Surprisingly for interval censored data, this
problem has not been investigated much, albeit in
lifetime studies such data occur frequently. In this article, interval
censored competing risks data are analyzed when some of the causes of
failure are missing. The proposed technique uses vertical modeling, an
approach that utilizes the data to extract information to the maximum
possible extent, especially when some causes of failure are missing.
The maximum likelihood estimates of the model parameters are obtained.
Through a Monte Carlo simulation study, the performance of the point
and interval estimators are assessed. It is observed through the
simulation study that the proposed analysis performs better than the
complete case analysis. Such analysis is particularly relevant for
smaller sample sizes, as carrying out a complete case analysis in
those cases may have a significant impact on the inferential
procedures. Through Monte Carlo simulations, the effect of a possible
model misspecification is also assessed on the cumulative incidence
function which is an important statistic in the framework of competing
risks. The proposed method has been illustrated on a real data set.
|
|
28-02-2018 |
Niranjan Balachandran |
Title: A function field analogue of a theorem of Sarkozy, due to B Green.
Speaker: Niranjan Balachandran
Date-Time: Wednesday, February 28 2018, 2 PM to 3.30 PM
Venue: Ramanujan Hall
Abstract: In the late 70s Sarkozy proved the following theorem: Given a
polynomial f(T) over the integers with f(0)=0, there exists a constant c_f
such that for any set $A\subset [n]$ of size at least $n/(log n)^{c_f}$
there exist distinct $a,b\in A$ such that $a-b=f(x)$ for some $x$. In
2016, Ben Green proved a function field analog of the same result but with
a much better bound for $|A|$: Given a polynomial $F\in\bF_q[T]$ of degree
$k$ with $F(0)=0$, there exists $0 q^{(1-c)n}$
there exist $\alpha(T)\neq\beta(T)$ in $A$ such that
$\alpha(T)-\beta(T)=F(\gamma(T))$ for some $\gamma(T)\in\bF_q[T]$. We will
see a proof of this result.
|
|
26-02-2018 |
Ronnie Sebastian |
CACAAG (Combinatorial Aspects of Commutative Algebra and Algebraic
Geometry) seminar
Speaker: Ronnie Sebastian
Date & Time : 26th February, 2pm
Venue : Ramanujan Hall
Abstract: This talk will be based on the following elementary and nice
exposition
http://www.math.stonybrook.edu/~roblaz/Reprints/Green.Laz.Simple.Pf.Petri.pdf
Using some simple facts about projective space, cohomology, cohomology of
line bundles on projective space, we shall prove the following theorems:
1. Noether's theorem - Projective normality of the canonical embedding of
non-hyperelliptic curves.
2. Petri's -theorem - Let X be a smooth and projective curve of genus g
\geq 5. Assume that X carries a line bundle A of degree g-1 with h^0(A)=2.
Further assume that both A and \Omega_X\otimes A^* are generated by their
global sections. Then the homogeneous ideal of X in its canonical embedding
is generated by degree 2 elements.
|
|
26-02-2018 |
G. Arunkumar |
Speaker: G. Arunkumar
Date & Time : Monday Feb 26, at 11:30am
Venue: Ramanujan Hall
Title: Chromatic polynomials and Lie algebras
Abstract: In this talk, I will prove a connection between root
multiplicities for Borcherds-Kac-Moody
algebras and graph coloring. I will show that the generalized
chromatic polynomial of the graph
associated to a given Borcherds algebra can be used to give a closed
formula for certain root
multiplicities. As an application, using the combinatorics of Lyndon
words, we construct a basis for the root spaces corresponding to these
roots and determine
the Hilbert series in the case when all simple roots are imaginary.
In last ten minutes, We will talk about chromatic discriminant of a graph:
The absolute value of the coefficient of q in the chromatic polynomial
of a graph
G is known as the chromatic discriminant of G and is denoted
$\alpha(G)$. We start with a brief survey on many interesting
algebraic and combinatorial interpretations of $\alpha(G)$. We use two
of these interpretations (in terms of
acyclic orientations and spanning trees) to give two bijective proofs
for a recurrence formula
of $\alpha(G)$ which comes from the Peterson recurrence formula for
root multiplicities of Kac-Moody algebras.
|
|
21-02-2018 |
Popular Lecture: Prof.J.K.Verma |
POPULAR LECTURE
Date and Time: 21st February, Wednesday
1.45-2.45pm
Title:The Cartan-Dieudonne' Theorem
Speaker: Prof.J.K.Verma
Venue: Ramanujan Hall
Abstract: We shall discuss the Cartan-Dieudonne theorem which
establishes that every orthogonal transformation of the n-dimensional
Euclidean space is a composition of at most n reflections. We shall
show how to construct these n reflections using the Householder
matrices.
|
|
22-02-2018 |
Mikhail Borovoi, Tel Aviv University, currently at TIFR |
Speaker: Mikhail Borovoi, Tel Aviv University, currently at TIFR
Date: Thursday, February 22, 2018
Time: 4:00 pm -- 5:00 pm
Venue: Ramanujan Hall
Title: Cayley groups
Abstract
:
I will start the talk from the classical "Cayley transform" for the special
orthogonal group SO(n) defined by Arthur Cayley in 1846. A connected linear
algebraic group G over C is called a *Cayley group* if it admits a *Cayley
map*, that is, a G-equivariant birational isomorphism between the group
variety G and its Lie algebra Lie(G). For example, SO(n) is a Cayley
group. A linear algebraic group G is called *stably Cayley* if G x S is
Cayley for some torus S. I will consider semisimple algebraic groups, in
particular, simple algebraic groups. I will describe classification of
Cayley simple groups and of stably Cayley semisimple groups. (Based on
joint works with Boris Kunyavskii and others.)
|
|
20-02-2018 |
Department Colloquium |
Department Colloquium
Speaker: CS Dalawat, Harish Chandra research Institute
Date & Time: Tuesday, February 20, 2018, 16:00-17:00.
Venue: Ramanujan Hall
Title : Some footnotes to Galois's memoirs
Abstract : In his first memoir, Galois gave a criterion for an irreducible
equation of prime degree to be solvable by radicals. In the second memoir,
he defined primitive equations and showed that if a primitive equation is
solvable by radicals, then its degree is the power of a prime. His results
can be reformulated in terms of extensions of fields. We will show how to
extend this reformulation and parametrise all primitive solvable extensions
of an arbitrary field. (An extension is called primitive if there are no
intermediate extensions, and it is called solvable if the Galois group of
its Galois closure is a solvable group). All these concepts will be
recalled and illustrated through examples. If time permits, we will
discuss an arithmetic application. The talk should be accessible to a wide
audience, including students.
|
|
20-02-2018 |
Department Colloquium |
Department Colloquium
Speaker: CS Dalawat, Harish Chandra research Institute
Date & Time: Tuesday, February 20, 2018, 16:00-17:00.
Venue: Ramanujan Hall
Title : Some footnotes to Galois's memoirs
Abstract : In his first memoir, Galois gave a criterion for an irreducible
equation of prime degree to be solvable by radicals. In the second memoir,
he defined primitive equations and showed that if a primitive equation is
solvable by radicals, then its degree is the power of a prime. His results
can be reformulated in terms of extensions of fields. We will show how to
extend this reformulation and parametrise all primitive solvable extensions
of an arbitrary field. (An extension is called primitive if there are no
intermediate extensions, and it is called solvable if the Galois group of
its Galois closure is a solvable group). All these concepts will be
recalled and illustrated through examples. If time permits, we will
discuss an arithmetic application. The talk should be accessible to a wide
audience, including students.
|
|
20-02-2018 |
Madhusudan Manjunath |
Commutative algebra seminar
Speaker: Madhusudan Manjunath
Date and time : Tuesday 20 Feb, 11.30am-1.00pm
Venue: Room 215
Title: Groebner bases of Toric Ideals.
Abstract: This is the first of two lectures where we'll cover Groebner
bases of toric ideals. We start with an introduction to toric ideals and
then study their Grobener bases. Our main goal will be a theorem of Bernd
Sturmfels from 1991 that relates (certain) initial ideals of toric ideals
to regular triangulations of an associated point configuration. The
lectures are based on Chapters 4 and 8 of the book ``Groebner Bases and
Convex Polytopes'' by Sturmfels.
|
|
First Previous 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Next Last |